Algorithms for Integer Programming
نویسنده
چکیده
• Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is known for their solution. • Given our inability to solve integer programming problems efficiently, it is natural to ask whether such problems are inherently “hard”. Complexity theory, offers some insight on this question. It provides us with a class of problems with the following property: if a polynomial time algorithm exists for any problem in this class, then all integer programming problems can be solved by a polynomial algorithm, but this is considered unlikely. • Algorithms for integer programming problems rely on two basic concepts:
منابع مشابه
An Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem
The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...
متن کاملModeling and scheduling no-idle hybrid flow shop problems
Although several papers have studied no-idle scheduling problems, they all focus on flow shops, assuming one processor at each working stage. But, companies commonly extend to hybrid flow shops by duplicating machines in parallel in stages. This paper considers the problem of scheduling no-idle hybrid flow shops. A mixed integer linear programming model is first developed to mathematically form...
متن کاملA nonlinear multi objective model for the product portfolio optimization: An integer programming
Optimization of the product portfolio has been recognized as a critical problem in industry, management, economy and so on. It aims at the selection of an optimal mix of the products to offer in the target market. As a probability function, reliability is an essential objective of the problem which linear models often fail to evaluate it. Here, we develop a multiobjective integer nonlinear cons...
متن کاملThe project portfolio selection and scheduling problem: mathematical model and algorithms
This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialis...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملSufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014